基体偏压对高功率脉冲磁控溅射制备 类石墨碳膜的影响研究

张学 谦^{1,2} 黄美 东^{1*} 柯培 玲^{2*} 汪爱英² (1. 天津师范大学 天津 300387; 2. 中科院宁波材料技术与工程研究所 宁波 315201)

Impact of Bias on the Graphite-Like Carbon Films Grown by High Power Impulse Magnetron Sputtering

Zhang Xueqian^{1, 2}, Huang Meidong^{1*}, Ke Peiling^{2*}, Wang Aiying²

(1. Tianjin Normal University, Tianjin 300387, China; 2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China)

Abstract The graphite-like carbon (GLC) films were deposited by high power impulse magnetron sputtering (HPPMS) on Si substrates. The impacts of the synthesis conditions, such as the substrate bias, ion energy and pressure, on the properties of the GLC films were evaluated. The GLC films were characterized with X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, atomic force microscopy (AFM), and conventional mechanical probes. The results show that the substrate bias voltage strongly affects the microstructures and mechanical properties. For instance, as the bias increased, the surface became increasingly smooth, accompanied by an increased hardness and internal compressive stress; the sp^2 density changed in a decrease-increase mode, minimized at -100 V. at -300 V, the GLC films display excellent tribological performance, possibly because of the increased sp^2 density and surface hardness, and a decreased surface roughness.

Keywords HIPIMS, Bias voltage, GLC films; Microstructure

摘要 采用高功率脉冲磁控溅射技术于 Si 基底表面制备了类石墨碳膜,研究了基体偏压对薄膜沉积速率、微观结构、力 学性能及摩擦学性能的影响规律。结果表明:随着基底偏压的增高,GLC 薄膜 sp²含量呈先减小后增加的趋势,在一100 V 时达 到最小值;其表面粗糙度逐渐降低;硬度和内应力逐渐增大;在基体偏压为一300 V 时薄膜的摩擦性能最好,高 sp²含量、高硬 度和低表面粗糙度共同决定了 GLC 薄膜优异的摩擦学性能。

关键词	高功率膨	k冲磁控溅射	偏压	类石墨碳膜	微观结构	
中图分类号	5: TB79	文献标识码: A	L	doi: 10. 3969/j. is	sn. 1672— 7126. 2013. 10. 0	3

随着新型纳米复合薄膜的不断开发和研究,固 体润滑薄膜有着非常广阔的应用前景。在众多固体 润滑材料中,非晶碳膜具有高硬度、低摩擦系数和很 高的耐磨性等优点,作为一类新型的减摩润滑材料 而备受关注。近年来以碳-碳 sp²键为主的类石墨碳 (graphite-like carbon, GLC)膜克服了传统类金刚石 DLC(diamond-like carbon, DLC)膜与铁基材料发生触 媒反应而受到重视^[1-3]。目前,GLC 薄膜主要是通 过直流磁控溅射和非平衡磁控溅射制备,但传统的 磁控溅射技术溅射的靶材大多以原子形态存在,离 子能量较低,可控性较差,通过外部场很难控制加 速,沉积薄膜的质量和性能难有明显优化。高功率 脉冲磁控溅射(HIPIMS)技术是近年来研发出的一种 新型物理气相沉积方法,其特点是利用较高的脉冲

收稿日期: 2012-11-19

基金项目:国家自然科学基金项目(51005226,61078059,51101080);宁波市创新团队(2011B81001)

^{*}联系人: E-mail: semdfawf @yahoo.com; kepl @himte, ac.en ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

峰值功率和较低的脉冲占空比来产生高离化率,峰 值功率和等离子体密度是普通直流磁控溅射的 1000倍,溅射铜靶离化率可高达70%以上,且束流 不含大颗粒,近年来已引起研究者的广泛关注^[4-5]。

在非晶碳膜的沉积过程中,沉积离子的能量对 薄膜结构和性能有很大的影响。可以通过改变沉积 过程中离子的能量,调控非晶碳膜中的 sp^2, sp^3 含 量,实现硬度、弹性模量和摩擦学性能优化的可控制 备^[6-7]。在非晶碳膜沉积过程中,离子到达基体的 能量可表示为

$$E_{\rm i} = e(V_{\rm p} - V_{\rm b}) + E_0$$
 (1)

其中, E_i 表示离子到达基体时的能量, V_p 为等离子 体电势, V_b 为基体偏压, E_0 为离子在等离子体中的 起始能量。由式(1)可知, 改变基体负偏压可以有效 地改变离子到达基体的能量, 偏压越大, 离子到达基 体时的能量越大。因此, 本文采用 HIPMS 技术制备 GLC 薄膜, 利用 HIPMS 高的离化率, 通过改变偏压 有效控制沉积离子的能量, 研究不同基体偏压对 HIPMS 制备 GLC 薄膜结构和性能的影响规律。

1 实验

1.1 薄膜制备

基体材料 P(100)型单晶 Si 片用于结构表征和 性能测试, 靶材选用 99.95%高纯度石墨靶。实验 用高功率脉冲磁控溅射电源为哈尔滨工业大学, 先 进焊接与连接国家重点实验室生产的高功率复合脉 冲磁控溅射电源。图 1 为电源电路结构图, 采用直 流和脉冲电源并联叠加的形式, 直流电源给磁控靶 提供恒定的直流电流, 脉冲电源通过将直流电压斩 波成脉冲电压向靶材提供脉冲电流。

国 1 电源电路运行构图 Fig. 1 Schematic circuit of the hybrid power supply

沉积 GLC 薄膜前,首先将基体依次放入丙酮和 酒精中超声波清洗各 15 min,冷风吹干后装入真空 腔样品架,将基体待镀面转至正对溅射靶材适当位 置待镀。当真空室真空度抽至 4.5×10⁻³ Pa 以下 时,通入100 ml/min(标准状态)氯气,保持基体偏压 一500 V,利用辉光放电对样品表面和靶材表面进行 辉光刻蚀清洗 20 min;清洗后通入 50 ml/min 氩气, 并开启 HIPIMS 电源,调节并保持脉冲偏压 1000 V, 频率 50 Hz,脉宽 65 Hs,复合直流 1.0 A,沉积GLC 薄 膜,沉积时对基体施加不同的偏压,分别为一50,一 100,一200 和一300 V,沉积时间为 2 h,整个沉积过 程中,基体以一定的自转速率旋转,保持薄膜的均匀 性。

1.2 薄膜表征

采用美国 Kla-Tencor Alpha-Step IQ 台阶仪对 GLC 薄膜的厚度进行测量,并通过计算得到薄膜的 沉积速率:利用日本岛津生产的AXB ULTRA DLD 型号的X射线光电子能谱(XPS)(分辨率为0.48 eV 的单色 $Al(mono)K\alpha$ 射线源,入射能量为 160 eV,每 个样品测试前用氩离子枪溅射清洗 120 s)检测薄膜 中存在的键位:采用英国 RENISHAW inVia 型号激光 共聚焦拉曼(Raman)光谱仪(激发 633 nm 氩离子激 光束,测量范围800~2000 m⁻¹)对薄膜C键进行检 测:使用美国 Veeco 3100 型号原子力显微镜 (AFM) 轻敲模式对薄膜表面形貌和粗糙度进行测试:采用 美国 MTS 公司生产的 NANO G200 型号纳米压痕仪, 运用连续刚度法测试薄膜硬度,压痕深度分辨率小 于 0.01 nm, 压入 6 个点, 取压入深度为薄膜厚度的 十分之一处的结果为薄膜的硬度值:GLC 薄膜的残 余应力采用韩国 J&L 公司的 JLCST022 残余应力仪 进行测量,其应力测试范围 0.001~100 GPa,分辨率 0.001 GPa;采用韩国 J&L 公司的 JLTB-02 型球盘式 摩擦磨损试验机测试不同沉积参数下制备的 GLC 薄膜在室温大气环境下的摩擦学性能,摩擦测试参 数为: 载荷3 N、旋转半径 3 mm、线速度 100 mm/s、行 程 200 m, 对磨球是直径为 6 mm、硬度不小于 60 HRC 的 SUJ2/GCr15 轴承钢球; 采用日本 FEI Quanta 250 FEG 扫描电子显微镜(SEM)对薄膜磨痕和磨球 磨斑形貌进行观察。

2 结果与分析

2.1 GLC 薄膜的沉积速率

图 2 为 GLC 薄膜沉积速率与基体偏压的关系 曲线。由图可知, 当基体偏压从一50 V 增加到一200 V 时, 沉积速率从 2.81 nm/min 缓慢降低, 而随偏压 增加到一300 V, 沉积速率相对较快地递减至 2.50 nm/min。HIPIMS 较传统的溅射技术具有高离化 率^[10], 溅射出来的靶材粒子大多以离子形式存在的 优点,离子在负偏压作用下被吸引到基体参与成膜, 随偏压增大,离子到达基体的数量增多,有利于沉积 速率的提高;而另一方面,随着基体偏压增大、基体 对离子的吸引作用增强,离子到达基体时能量增大, 在薄膜沉积过程中对基体和已沉积薄膜的轰击作用 增强,薄膜中结合较弱的碳原子易被反溅射离开薄 膜表面,又会使沉积速率降低。这两方面的综合作 用决定了薄膜的沉积速率。从图2可以看出,当偏 压小于-200 V时,HIPIMS离化出的大量离子被吸 引到基体,弥补了反溅射效应,因而沉积速率缓慢降 低。由于离化的离子数量有限,当偏压继续增大到 -300 V时,通过吸引离子来促进薄膜生长的效果 趋于饱和,而反溅射效应更为明显,结果使薄膜沉积 速率较快地下降。

Fig 2 Deposition rates of GLC films synthesized at different biases

2.2 GLC 薄膜微观结构

由于各元素的化学价态均有特定的 X 射线光 电子芯能态, 元素的价键可以通过 XPS 来测量。在 非晶碳膜中, 碳原子同时存在 sp^2 杂化的石墨结构和 sp^3 杂化的金刚石结构。由于 sp^3 键比 sp^2 键的键能 略大, 使得 sp^3 结构 X 射线光电子芯态能量比 sp^2 结 构高约 1.35 $eV^{[11]}$ 。图 3 为不同基体偏压条件下制 备 GLC 薄膜的 C1s 谱, 最终的峰型采用 Lorentzian 与 Gaussian 卷积所得的 Voigt 峰形^[12]。 拟合变量包括 sp^2 峰的能量, sp^3 峰与 sp^2 峰的能量差, 两峰相同的 半高宽, 以及 C-O 峰, C-O 峰包括 C-O 单键和 C=O 双键。各 峰峰位分别位于 284.6 eV 附近的 sp^2 -C 峰、285.8 eV 附近的 sp^3 -C 峰, 以及 286.6 eV 附近的 C-O 峰。从图 3 中可以看出, 用 HIPIMS 制备的 C 膜 在不同基体偏压下, 薄膜中 sp^2 含量占主导地位, 所 制备的薄膜为典型的 GLC 薄膜。近一步对 GLC 薄膜内部结构的研究可以通过 Raman 光谱仪来分析。

图 3 不同偏压下 XPS C1s 能谱图

Fig. 3 C1s high-resolution XPS spectra of the GLC films grown at different biases

Raman 光谱因对碳材料化学键的结构、团簇尺 寸具有良好的分辨能力,且操作简单、对薄膜没有破 坏性的优点,成为分析 C 膜中碳原子键结构的最常 用分析方法之一。图 4(a)为不同基体偏压 GLC 薄 膜的 Raman 光谱图, 从图中可以看出 Raman 光谱在 $800 \sim 2000 \text{ cm}^{-1}$ 之间,呈现一非对称峰。利用高斯 拟合,可将其分解为两个峰:一个是位于 1360 cm⁻¹ 左右的 D 峰, 另一个是位于 1560 cm^{-1} 左右的 G 峰。 D峰和G峰均对应于非晶碳膜中 sp^2 振动模式,其 中G峰对应于碳膜内的 p^2 团簇结构,源于石墨结 构中的C-C键的伸缩振动和链状结构; D 峰对应于 无序的细小石墨 sp^2 结构, 源于碳环伸缩的"呼吸" 振动模式^[13]。在非晶碳膜中,G峰的半高宽(FWHM (G))、G 峰的位置(Pos(G))以及 D 峰与 G 峰的强度 比 (I_D/I_G) 可反映出薄膜微观结构特征。其中, $I_D/$ $I_{\rm G}$ 反映薄膜中 sp^2 键含量的多少, FWHM (G)主要反 映由键长和键角引起的结构无序度 $^{13-14}$ 。图 4(b) 为各峰解谱后的峰系数,可见,随着基体偏压的增 $I_{\rm D}/I_{\rm G}$ 和 Pos(G)先减小后增大,在偏压为一100 V 时达到最小值,即薄膜中 p^2 含量先减小后增大,在 偏压为-100 V 时达到最小值, 而 sp³含量先增大后 减小^[14-15]。FWHM(G)能反应薄膜中 sp³含量的变</sup>化, 一般来说 sp^3 含量高的碳膜 FWHM(G)大, 但从 图 4(b)可以看出, 在-300 V 时 FHWM (G)升高, 这 是由于此时基体对离子的吸引力很大,离子对基体 的轰击作用很强,在成膜过程中C 膜键长和键角的 弯曲和扭变增大,局部无序度增大。

采用AFM 对薄膜的表面形貌和粗糙度进行了 表征,如图 5 所示。在偏压为-50 V 时,薄膜表面 呈现出很多"尖峰",薄膜表面粗糙度 *R*a为 2.21 nm。随着偏压的增大,薄膜表面趋于光滑,尖峰逐 渐减小,在偏压为-300 V 时,薄膜表面粗糙度 *R*a 仅为 0.33 nm。薄膜表面形貌的变化主要与粒子的 轰击效应有关。薄膜粗糙度快速地降低是由于 HIPMS 具有很高的离化率^{10]},基体对离子的吸引 效果明显。随着偏压增大,粒子到达基底时的沉积 能量增大。这一方面增大了粒子在生长表面的迁移 扩散能力,促使粒子填充在表面"低谷"处;另一方 面,高能离子的轰击,有助于减少薄膜表面结合较弱 的化学键,使薄膜致密化,降低薄膜表面粗糙 度^[16-17]。此外,HIPIMS 中 Ar 气的离化率增大,随 着偏压的增高, Ar 离子能量增大,对薄膜表面的刻 蚀作用同样有利于粗糙度的减小^[18]。

图 5 不同偏压下制备的 GLC 薄膜 AFM 形貌 Fig. 5 AFM images of the GLC films deposited at different biases

2.3 GLC薄膜的力学性能

图 6 为偏压与 GLC 薄膜硬度和弹性模量的关系。从图中可以看出,随着基体偏压的增大,薄膜的硬度和弹性模量单调增加,薄膜的硬度和弹性模量 分别从基底偏压为— 50 V 的 7.8 和 140 GPa,分别增加到— 300 V 的 9.2 和 177 GPa。一般认为,非晶碳膜的力学性能通常都与 sp^3 键结构有关, sp^3 结构含量越高,薄膜的硬度和弹性模量越高^{19]}。由薄膜微观结构的分析可知,偏压为— 100 V 时 sp^3 键含量最高,但是此时薄膜的硬度和弹性模量却不是最大。

薄膜的残余应力是表征薄膜力学性能的另一个 指标,图7为薄膜残余应力随偏压的变化曲线,从图 中可以发现,随着基体偏压的增大,薄膜的残余应力 逐渐增加,,薄膜的残余应力由两部分组成,一部分 是由基底与薄膜热膨胀系数不同引起的热应力,另一部分是由薄膜内部结构引起的内应力^[6]。随着基体偏压的增大,薄膜沉积过程中离子对薄膜的轰击 作用增强,离子的轰击效应促使薄膜内部结构局域

Fig. 6 Hardness and elastic modulus of the GLC films grown at

逐渐增加。薄膜的残余应力由两部分组成,一部分。 different biases 新增4-20 存在Inna Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 畸变度增加,残余应力增大。同时,离子的轰击效应 也会使薄膜结构致密化,提高薄膜的硬度^[20]。对比 图6和图7可以发现薄膜力学性能和残余应力增加 呈相同的趋势,由此可知薄膜的致密性对薄膜的力 学性能起决定作用。

图 7 不同偏压下制备的 GLC 薄膜残余应力

Fig 7 Internal stress of the GLC films grown at different biases

2.4 GLC薄膜的摩擦学性能

图 8 为不同基体偏压下制备的 GLC 薄膜摩擦 曲线, 从图中可以看出, 基体偏压为— 50 V 时, 薄膜 的摩擦过程不稳定, 尤其在摩擦 2600 s 后摩擦系数 突然增高, 此时可能是对磨球上的转移膜剥落或薄 膜磨穿所致。基体偏压从— 100 V 增大到— 300 V 时, 薄膜的平均摩擦系数由 0. 18 降低到 0. 10。GLC 膜的摩擦性能与薄膜中 sp^2 键含量有关。与 sp^3 结 构中的 σ 键相比, sp^2 结构中的 π 键在摩擦过程中与 对磨球表面分子层的黏着轻微得多, 因而薄膜中 sp^2 结构的增多可以降低在摩擦过程中的摩擦阻力,从 而降低了其摩擦系数^{21]}。另一方面,随着偏压的增 高,薄膜表面粗糙度降低,在摩擦过程中对摩擦系数 的降低也有贡献。

图 8 不同偏压下制备的 GLC 薄膜摩擦曲线 Fig 8 Friction coefficients of the GLC films grown at different biases

为了进一步对 GIC 薄膜的摩擦学行为进行分析, 利用 SEM 观察了薄膜摩擦后的磨痕表面和对磨球上的 磨斑形貌如图 9 所示。当基体偏压比较小,为一50 和 一100 V 时,薄膜的磨痕宽度不仅宽,而且在磨痕处有 薄膜脱落,对应的轴承钢球磨斑尺寸也很大,在磨斑两 侧堆积有大量磨屑;当基体偏压增加为一200和一300 V 时,薄膜的磨痕宽度较小,尤其是一300 V 时磨痕不明 显,且对应的轴承钢球磨斑也最小,磨斑表面粘附有黑 色的转移膜。转移膜的生成阻止了薄膜与对磨球的直 接接触 同时还可以作为一个润滑层减少摩擦,更加有 效的承载重载和减磨润滑⁴。

图 9 不同偏压下制备的 GLC 薄膜磨痕形貌及对应磨球形貌

Fig. 9 Wear traces of the GLC films grown at different biases ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved.

3 结论

(1)随着基体偏压的增加,GLC 薄膜的反溅射 效应增强,沉积速率逐渐降低。但由于 HIPMS 具有 高离化率,大量离化的靶材粒子在偏压作用下被吸 引到基体参与成膜,在一定程度弥补了溅射效应,使 沉积速率缓慢降低。

(2)由于 HIPMS 具有高离化率,基底偏压能有 效改变粒子沉积能量,从而对 GLC 薄膜的微观结构 和力学性能有着较明显的影响。随着基底偏压的增 大,GLC 薄膜中 sp²含量先减小后增加,薄膜的粗糙 度逐渐降低,结构更加致密,硬度和弹性模量增加。

(3)高的 \wp^2 含量、高硬度和低表面粗糙度能够 有效改善GLC 薄膜的摩擦性能。本研究中,在偏压 为-300 V 时, HIPMS 制备的GLC 薄膜具有非常优 异的摩擦性能。

参考文献

- Nir D. Stress Relief forms of Diamond-Like Carbon Thin Films Under Internal CompRessive Stress [J]. Thin Solid Films 1984, 112(1): 41-50
- [2] Iyer S B, Harshavardhan K S, Kumar V. Buckling Patterns in Diamond-Like Carbon Films [J]. Thin Solid Films, 1995, 256 (1-2): 94-100
- [3] 蔺 增.孙少妮,王 永,等.联合载荷下无裂纹 DLC 薄膜的内应力有限元分析 [J].真空科学与技术学报, 2011,31(5):550-554
- [4] Alami J, Gudmundsson J T, Bohlmark J, et al. Plasma Dynamics in a Highly Ionized Pulsed Magnetron Discharge[J]. Plasma Sources Science and Technology, 2005, 14(3): 525-531
- [5] In J-H, Seo S-H, and Chang H-Y. A Novel Pulsing Method for the Enhancement of the Deposition Rate in High Power Pulsed Magnetron Sputtering[J]. Surface and Coatings Technology, 2008, 202 (22-23): 5298-5301
- [6] Wang Y, Li H, Ji L, et al. Microstructure, Mechanical and Tribological Properties of Graphite-Like Amorphous Carbon Films Prepared by Unbalanced Magnetron Sputtering [J]. Surface and Coatings Technology, 2011, 205(8-9): 3058-3065
- [7] Wang Y, Wang L, Zhang G, et al. Effect of Bias Voltage on Microstructure and Properties of Ti-Doped Graphite-Like Carbon Films Synthesized by Magnetron Sputtering[J]. Surface and Coatings Technology, 2010, 205(3): 793-800
- [8] Tay B K, Shi X, Cheah L K, et al. Growth Conditions and Properties of Tetrahedral Amorphous Carbon Films [J]. Thin

Solid Films, 1997, 308-309: 199-203

- [9] 田修波,吴忠振,石经纬,等.高脉冲功率密度复合磁控 溅射电源研制及放电特性研究[J].真空,2010,47(3): 44-47
- [10] Wu Z, Tian X, Shi J, et al. Novel Plasma Immersion Ion Implantation and Deposition Hardware and Technique Based on High Power Pulsed Magnetron Discharge [J]. The Review of Scientific Instruments, 2011, 82(3): 033511
- [11] 李刘合,张海泉,崔旭明,等.X 射线光电子能谱辅助 Raman 光谱分析类金刚石碳膜的结构细节[J].物理学 报,2001,50(8):1549-1555
- [12] Hærle R, Riedo E, Pasquarello A, et al. sp²/sp³ Hybridization Ration in Amorphous Carbon from C 1s Core-Level Shifts: X-Ray Photoelectron Spectroscopy and First-Principles Calculation[J]. Physical Review, 2001, B65(4): 054101
- [13] Casiraghi C Ferrari A C Robertson J. Raman Spectroscopy of Hydrogenated Amorphous carbon[J]. Physical Review, 2005, B72(8): 058401
- [14] C F A and J R. Interpretation of Raman Spectra of Disordered and Amorphous Carbon[J]. Physical Review, 2000, B61(20): 14095-14107.
- [15] Filik J, May P W, Pearce S R J, et al. XPS and Laser Raman Analysis of Hydrogenated Amorphous Carbon Films[J]. Diamond and Related Materials 2003, 12(3-7): 974-978
- [16] Kok Y N, Hovsepian P E, Luo Q, et al. Influence of the Bias Voltage on the Structure and the Tribological Performance of Nanoscale Multilayer C/ Cr PVD Coatings [J]. Thin Solid Films 2005, 475(1-2): 219-226
- [17] Pei Y T, Chen C Q, Shaha K P, et al. Microstructural Control of TiC/ a-C Nanocomposite Coatings with Pulsed Magnetron Sputtering[J]. Acta Materialia, 2008, 56(4): 696-709
- [18] Lifshitz Y, Edrei R, Hoffman A, et al. Surface Roughness Evolution and Growth Mechanism of Carbon Films from Hyperthermal Species [J]. Diamond and Related Materials. 2007, 16(10): 1771-1776
- [19] Wang Y, Ye Y, Li H, et al. A Magnetron Sputtering Technique to Prepare a-C: H Films: Effect of Substrate Bias[J]. Applied Surface Science, 2011, 257(6): 1990-1995
- [20] Wang D-Y, Weng K-W, Chang C-L, et al. Tribological Performance of Metal Doped Ddiamond — Like Carbon Films Deposited by Cathodic arc Evaporation [J]. Diamond and Related Materials, 2000, 9(3-6): 831-837
- Ma T B Hu Y Z, Wang H. Molecular Dynamics Simulation of Shear-Induced Graphitization of Amorphous Carbon Films
 J. Carbon, 2009, 47(8): 1953-1957