空气与 C₃H₈ 含量对气体氧-氮-碳三元共渗 化合物层结构的影响

郑 贺,陈仁德,杨 巍,柯培玲,汪爱英

(中国科学院 宁波材料技术与工程研究所 宁波市海洋防护与应用技术重点实验室,浙江 宁波 315201)

摘 要:以 NH₃、空气、C₃H₈ 与 N₂ 混合气体作为气源,采用两段式气体氧-氮-碳三元共渗方法,在 580 [°]C 加热 2 h, 随后降温至 540 [°]C 继续加热 1.5 h,实现对 S20C 钢的表面强化。保持通入气体总流量、空气与 C₃H₈ 添加比例不变,改变 空气与 C₃H₈ 的总含量,研究不同气氛组成处理后 S20C 钢表面渗层的厚度、形貌以及相结构变化趋势。结果表明,经过 处理后的样品表面形成了具有良好耐摩擦、耐腐蚀性能的亮白色化合物层,该化合物层具有单一 ε -Fe₂₃(N,C)物相,其 厚度随空气与 C₃H₈ 的总含量的增加而增大。

关键词:氧-氮-碳三元共渗;空气;C₃H₈;化合物层厚度;ε-Fe₂₃(N,C)相 中图分类号:TG156.8 文献标识码:A 文章编号:1001-3814(2013)10-0145-03

Effect of Air and C₃H₈ Content on Microstructure of Compound Layer During Gas Oxynitrocarburising Process

ZHENG He, CHEN Rende, YANG Wei, KE Peiling, WANG Aiying

(Ningbo Key Laboratory of Marine Protection Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China)

Abstract: The effects of air and C_3H_8 addition on the oxynitrocarburising characteristics of S20C steels in an atmosphere of NH₃-air- C_3H_8 -N₂ gas system were investigated. The results show that, with the increase of total flow rate of air and hydrocarbon reactive gases, the thickness of compound layer of S20C steels increases due to the increased carbon activity in the atmosphere. According to the X-ray diffraction analysis, the compound layer is composed of high purity single ε -phase, the thickness of compound layer increases with the increase of air and C_3H_8 content.

Key words: oxynitrocarburising; air; C₃H₈; compound layer thickness; ε-Fe₂₋₃(N, C) phase

气体氧-氮-碳三元共渗是一种先进的化学热处 理手段,相对于传统化学热处理技术,三元共渗可以 大幅度提高材料表面硬度、耐摩擦性能、耐腐蚀性能 以及抗咬合能力。其处理温度在铁-氮共析转变温 度以下,一般在560~580℃,炉内气氛加热后在氧 的促进下,形成大量活性氮原子与活性碳原子,通过 扩散作用进入材料表面^{□1}。碳渗入后形成的细微碳 化物可以促进氮的扩散,加快高氮化合物的形成,同 时形成的高氮化合物又能提高碳的溶解度,两者相

- 基金项目:浙江省自然科学基金项目(Y4100156);宁波市工业重大(重 点)择优委托科技攻关项目(2011B1016);宁波市江北区科 技计划工业科研攻关项目(2010A0203)
- 作者简介:郑贺(1982-),男,江苏徐州人,硕士,主要研究方向为材料表 面改性与涂覆技术;电话:0574-86685035; E-mail:zhenghe@nimte.ac.cn
- 通讯作者:汪爱英(1975-),女,陕西渭南人,研究员,博士生导师,博士;
 电话:0574-86685170;E-mail:aywang@nimte.ac.cn

互促进,最终大幅度提高渗入效率。传统氮碳共渗 后一般生成由 ε -Fe₂₋₃(N,C)相与 γ -Fe₄N 相等组成的 亮白色的化合物层。经研究发现,与混合相组成的 化合物层相比,由单一 ε -Fe₂₃(N,C)相组成的化合物 层拥有更高的硬度与更加优良的摩擦学特性、同时 还具有优异的耐腐蚀性能^[2]。但是,由于影响热处理 过程因素多,如何才能在化合物层中获得单一 ε -Fe_{2.3}(N,C)相,获得具有优异特性的热处理材料,已 成为近年来化学热处理领域的研究热点之一。目前, 研究结果表明[3-7],通过控制化合物层的生长工艺,可 以有效地生成由单一 ε -Fe₂₋₃(N,C)相组成的化合物 层。控制化合物层生长的方法有很多,氧气的添加便 是其中促进化合物层生长的有效手段之一。本文通 过向炉内通入干燥、洁净空气的手段引入氧气,形成 NH_3 、 O_2 、 C_3H_8 与 N_2 混合气氛;同时调控空气与 C_3H_8 的添加含量,采用设计的两段式处理工艺路线,获得 单一 ε -Fe_{2.3}(N,C)相的化合物层,并分析其厚度、截

收稿日期:2012-08-30

面微观形貌与相组成的变化规律,旨在为高性能 氧-氮-碳三元共渗层的制备提供理论和技术指导。

1 实验条件

1.1 实验准备

试样采用碳素钢 S20C,其化学成分(质量分数,%) 为 0.21C,0.43Mn,0.19Si,0.008P,0.008S,0.107Cr。试样 规格 ϕ 10 mm×5 mm,圆柱上下表面用不同型号砂纸 打磨后再用丙酮清洗。采用 ZRJ3-12-9 保护气氛炉 进行氧-氮-碳三元共渗处理,共渗气氛为 NH₄、C₃H₈ 气体及经过无油与干燥处理的洁净空气以及纯度≥ 99.9%N₂。

1.2 实验方法

根据前期工作结果,在 540~580 ℃根据氧添加 量的不同,C₃H₈主要发生以下反应:

$C_3H_8+5O_2 \rightarrow 3CO_2+4H_2O$	(1)
C = U + O / 2 + C = U + C + 2 U + C	(2)

$$C_{3}H_{8}+O_{2}/2 \rightarrow CH_{4}+CO+2H_{2}+C \tag{2}$$

$$C_3H_8 \rightarrow C+2CH_4 \tag{3}$$

对比三个反应式,发现当添加的空气与 C_3H_8 气体比例较高时,反应式(1)为 C_3H_8 的主要分解反应; 当添加的空气与 C_3H_8 气体比例低于一定值时,反应 式(3)为 C_3H_8 的主要分解反应;在此区间内,选择空 气: $C_3H_8=4.5:1$ 时,反应(2)为 C_3H_8 主要分解反应, 并产生 CO 气体与 H_2 气体,CO 在 CO+ $H_2 \rightarrow$ C[Fe]+ H_2O 反应下可以为三元共渗提供丰富的活性碳原 子;而 H_2 在可逆反应 2N $H_3 \leftrightarrow N_2+3H_2$ 中将利于反应 向形成 NH₃ 的方向进行,可以使炉内保持较低的氨分 解率、较高的氮势,因此可以提供更多的活性氮原子。

本文采用设计的两段式气体氧-氮-碳三元共 渗方法进行试验。在 580 ℃预热 20 min 后进行 2 h 的三元共渗处理。随后保持炉内气氛不变,降温直 至稳定于 540℃,降温加保温时间总计 1.5 h。最后用 氮气排空炉内气氛,试样取出空冷。气体总流量为 0.8 m³/h,采用三种气氛组合方式分别为: 50%NH₃+10%(4.5 空气 +C₃H₈)+40%N₂; 50%NH₃+20%(4.5 空气 +C₃H₈)+30%N₂; 50%NH₃+30%(4.5 空气 +C₃H₈)+20%N₂。

在氧-氮-碳三元共渗过程中,通过改变添加的 空气与丙烷气体总含量,研究其对三元共渗化合物 层厚度、形貌特种以及相组成的影响规律,其中采用 金相法测量化合物层厚度与形貌表征,X射线衍射 (XRD)检测化合物层表面的相组成结构。

2 结果及讨论

2.1 化合物层厚度变化

氧气与 C₃H₈ 的添加量决定了炉内气氛反应产 生的 CO_{CO_2} 的总量,而 CO 和 CO_2 在炉内气氛的 含量对样品表层化合物层厚度与相组成有着极大的 影响。图1为在总流量为0.8m³/h、空气与C₃H₈总添 加百分比分别为10%、20%、30%、经过三元共渗处 理后的 S20C 样品横截面的光学形貌。可以看出,在 三种不同的气氛下进行氧-氮-碳三元共渗处理后 的 S20C 钢样品表面,在最表面氧化层之下均可形 成均匀且较为致密的化合物层。图中化合物层平均 厚度分别为 18.4、20.5 和 21.5 µm, 通过对比, 可以 看到化合物层厚度随空气与 C₃H₈ 通入量增加而增 大的变化趋势。图 2 则更加直观地显示出化合物层 厚度的变化趋势:经共渗处理后 S20C 样品表面化 合物层厚度随空气与 C₃H₈ 总添加量的增加而增大。 这是由于增加空气与 C₃H₈ 总添加量,使得炉内气氛 中 CO 含量升高,进而为共渗过程提供了丰富的活 性碳原子,大量的碳原子扩散到样品表层,提高了化 合物层的生长速率。但同时,在实验过程中由于反应 式(2)中有游离碳的形成,过度增加氧气与C₃H₈量 将会造成试样表面附着大量黑色碳颗粒,严重影响 共渗过程。由此可看出,氧气与C₃H₈的添加量对炉

图 1 不同空气与 C₃H₈ 通入重下氧-氨-碳二元共渗 S20C 钢表面化合物层的截面显微形貌 ×500 Fig.1 Microstructure of oxynitricarburised compound layer under different air and C₃H₈ contents on the S20C steel ×500

内 CO 与 C 含量均有重要影响,样品化合物层厚度 会随着添加量的增加而增加,但过大的添加量会严 重影响共渗质量,其间应有最优值。

2.2 化合物层成分分析

图 3 为三元共渗处理后的 S20C 样品的 XRD 图。可以看出不同气氛条件下,S20C 刚表面均含有 ε -Fe₂₋₃(N,C)、Fe₂O₃ 和 Fe₃O₄ 相,不含可降低样品表 面硬度、耐蚀性以及耐摩擦性能的 γ' -Fe₄(N,C)相。 由于 Fe₂O₃ 和 Fe₃O₄ 相均来自于最表面的氧化层,可 以判断,次表面的化合物层是由单一的 ε -Fe₂₋₃(N,C) 相所组成。通过图 4 分析可得知,若要得到单一 ε -Fe₂₋₃(N,C)相,须保证在高 N 含量的前提下,将 C 含量控制在相应范围内。普通的碳氮共渗与氮碳共 渗处理后的样品表面的 C 含量均偏低,进而导致 ε 与 γ' 相的共存。氧气的引入使得炉内碳势增加,同时 与表面 Fe 反应,使得 Fe₂O₃ 的含量增加,活化了样 品表面,进而增加了碳原子向样品表面的扩散速度 和扩散量,起到催渗作用,保证了单独 ε 相的形成。

3 结论

(1) 在空气与 C₃H₈ 通入量分别占总流量 10%、
 20%和 30%的情况下,S20C 钢表面气体氧-氮-碳三
 元共渗化合物层厚度呈现递增趋势。

(2) 通过截面形貌观察可以发现,经过气体氧-氮-碳三元共渗处理后的 S20C 钢样片表面形成了 较为均匀、致密的化合物层。

(3) 由于氧气的引入,经过气体氧氮碳三元共
 渗处理后的 S20C 钢的化合物层,不含 γ'-Fe₄(N,C)
 相,呈现单一的 ε-Fe₂₋₃(N,C)相状态。

参考文献:

- Pereloma E V, Conn A W, Reynoldson R W. Comparison of ferritic nitrocarburising technologies [J]. Surface and Coatings Technology, 2001, 145:44-50.
- [2] Shi Li, Rafael R Manory, Compound layer growth and compound layer porosity of austenite plasma nitrocarburised non-alloyed steel [J]. Surface and Coatings Technology, 1995, 71:112-120.
- [3] 邱春城,潘健生,胡明娟,等. 单相 Fe₂N 奥氏体的气体渗氮制 备工艺[J]. 机械工程材料,2002,26(12):29-31.
- [4] Mitchell E, Dawes C. Molten salt bath nitriding [J]. Metal Treatment and Forging, 1996, 31:3-16.
- [5] Prenosil B. Structures of layers produced by bath nitriding and by nituiding in ammonia atmosphere with hydrocarbon addition
 [J]. Harterei-technische Mitteilungen, 1965, 20:141-149.
- [6] Prenosil B. New consideration on composition and stricture of sulpho-nitrided and other complex saturated surface layers[J]. Hutn. Listy., 1962, 17(6):414-424.
- [7] Bramley, Haywod F W, Cooper A T, et al. The diifusion of non-metallic elements in iron and steel [J]. Trans. of the Faraday Soc., 1935, 31(5):707-734.